Identifying Fixed Points in Recurrent Neural Networks using Directional Fibers: Supplemental Material on Theoretical Results and Practical Aspects of Numerical Traversal

نویسندگان

  • Garrett E. Katz
  • James A. Reggia
  • Giovanni Forni
چکیده

Fixed points of recurrent neural networks can represent many things, including stored memories, solutions to optimization problems, and waypoints along non-fixed attractors. As such, they are relevant to a number of neurocomputational phenomena, ranging from low-level motor control and tool use to high-level problem solving and decision making. Therefore, global solution of the fixed point equations can improve our understanding and engineering of recurrent neural networks. While local solvers and statistical characterizations abound, we do not know of any method for efficiently and precisely locating all fixed points of an arbitrary network. To solve this problem we have proposed a novel strategy for global fixed point location, based on numerical traversal of mathematical objects we defined called directional fibers [2]. This report supplements our results in [2] by presenting certain technical aspects of our method in more depth. Acknowledgements: Supported by ONR award N000141310597. Thanks to Drs. Howard Elman and Giovanni Forni for helpful discussions. ∗Email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Directional Fibers to Locate Fixed Points of Recurrent Neural Networks.

We introduce mathematical objects that we call ``directional fibers,'' and show how they enable a new strategy for systematically locating fixed points in recurrent neural networks. We analyze this approach mathematically and use computer experiments to show that it consistently locates many fixed points in many networks with arbitrary sizes and unconstrained connection weights. Comparison with...

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

Dynamic Analysis of Multi-Directional Functionally Graded Panels and Comparative Modeling by ANN

In this paper dynamic analysis of multi-directional functionally graded panel is studied using a semi-analytical numerical method entitled the state-space based differential method (SSDQM) and comparative behavior modeling by artificial neural network (ANN) for different parameters. A semi-analytical approach which makes use the three-dimensional elastic theory and assuming the material propert...

متن کامل

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

The Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks

In this work, artificial neural network (ANN) has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017